當(dāng)前位置: 首頁 > 工業(yè)電子產(chǎn)品 > 半導(dǎo)體產(chǎn)品 > 可編程邏輯器件 > FPGA
發(fā)布日期:2022-05-11 點(diǎn)擊率:52
簡介
現(xiàn)場可編程門陣列(FPGA)的起源可以追溯到20世紀(jì)80年代,從可編程邏輯器件(PLD)演變而來。自此之后,F(xiàn)PGA資源、速度和效率都得到快速改善,使FPGA成為廣泛的計(jì)算和處理應(yīng)用的首選解決方案,特別是當(dāng)產(chǎn)量不足以證明專用集成電路(ASIC)的開發(fā)成本合理有效時(shí)。FPGA取得快速發(fā)展,并廣泛用于大規(guī)模部署。例如,繼2013年試點(diǎn)項(xiàng)目中使用FPGA成功加快Bing搜索引擎的速度之后,Microsoft?將配備FPGA的服務(wù)器使用范圍擴(kuò)展到云數(shù)據(jù)中心。
FPGA電源系統(tǒng)要求
FPGA需要幾個(gè)不同的低壓供電軌,每個(gè)供電軌都有自己的電壓和電流規(guī)格,以便為其內(nèi)核邏輯、I/O電路、輔助邏輯、收發(fā)器和存儲(chǔ)器供電。這些供電軌可能需要按特定的順序開啟和關(guān)閉,以避免損壞FPGA。負(fù)載點(diǎn)(POL)穩(wěn)壓器將電路板較高的輸入電源電壓降低為FPGA所需的多個(gè)輸入電壓。當(dāng)功率轉(zhuǎn)換效率至關(guān)重要時(shí),開關(guān)穩(wěn)壓器可用作POL穩(wěn)壓器,而線性穩(wěn)壓器(例如低壓差(LDO)穩(wěn)壓器)則用于噪聲敏感型電路,例如PLL和收發(fā)器。
典型的電路板輸入電壓為5 V、12 V、24 V和48 V,F(xiàn)PGA的輸入電壓范圍則為低于1 V至約3 V。對(duì)于高輸入電壓(12 V、24 V、48 V),可能需要使用額外的降壓穩(wěn)壓器來生成饋送給POL穩(wěn)壓器的中間總線電壓(參見圖1)。在FPGA供電軌中,核電壓需要最低的電壓(約等于或低于1 V)和最高的精度(±3%或更優(yōu)),電流電平約為幾十安培,具體取決于FPGA資源的利用率。為了防止出現(xiàn)邏輯錯(cuò)誤,不僅在直流條件下,而且在FPGA電流瞬態(tài)期間,電壓波動(dòng)都需要按照FPGA供電軌公差規(guī)格要求控制在幾十毫伏之內(nèi)。電源的直流精度越差,在瞬態(tài)條件下維持可用電源電壓所需的旁路電容就越多。例如,假設(shè)采用±3%內(nèi)核電壓公差規(guī)格。使用精度為±1%的直流電源時(shí),對(duì)應(yīng)的瞬態(tài)公差為±2%。直流電源的精度較低(±2%)時(shí),瞬態(tài)公差會(huì)更嚴(yán)格(±1%),相比之前的示例,需要更多的旁路電容。
圖1.一種可行的FPGA電源樹設(shè)計(jì):高壓輸入電源(例如12 V、24 V或48 V)降至中間總線電壓,然后饋送給為FPGA供電的POL穩(wěn)壓器。
在最終進(jìn)行設(shè)計(jì)變更、在另一種應(yīng)用中重用設(shè)計(jì)、實(shí)施板裕量測試,以及在開發(fā)或現(xiàn)場運(yùn)行期間動(dòng)態(tài)優(yōu)化系統(tǒng)功耗時(shí),都需要基于默認(rèn)的設(shè)定點(diǎn)調(diào)整或微調(diào)FPGA電源電壓電平。在這種情況下,在電源反饋網(wǎng)絡(luò)中采用多個(gè)不同電阻并聯(lián)不是最快或最可行的解決方案。實(shí)現(xiàn)電壓微調(diào)的一種方法是使用數(shù)模轉(zhuǎn)換器(DAC)來驅(qū)動(dòng)穩(wěn)壓器的反饋網(wǎng)絡(luò)(參見圖2)。需要為微調(diào)程序編寫軟件代碼,從模數(shù)轉(zhuǎn)換器(ADC)獲取電源電壓測量數(shù)據(jù),以計(jì)算正確的DAC代碼,然后緩慢將DAC輸出調(diào)節(jié)至計(jì)算出的數(shù)字碼,逐步穩(wěn)定提高電源電壓,在不會(huì)產(chǎn)生毛刺或過沖的情況下達(dá)到目標(biāo)電壓電平。這種微調(diào)程序需要重復(fù)實(shí)施,以確保不會(huì)因?yàn)榻M件隨時(shí)間或溫度變化出現(xiàn)偏移,進(jìn)而導(dǎo)致電源偏離目標(biāo)電壓。
圖2.使用DAC和ADC將POL電源輸出電壓微調(diào)至目標(biāo)電壓。
監(jiān)測FPGA電源電壓、電流和故障條件,對(duì)于理解系統(tǒng)在不同場景下的健康狀況和功耗至關(guān)重要,這是因?yàn)椋現(xiàn)PGA是整個(gè)電子系統(tǒng)的核心。將這種理解和微調(diào)功能結(jié)合起來,可以避免為最壞的情況設(shè)計(jì)電源,從而節(jié)省成本和功率。此外,潛在的系統(tǒng)故障可能表現(xiàn)為FPGA功耗異常,從而在電路板或系統(tǒng)發(fā)生故障之前讓主機(jī)控制器或維修人員及早發(fā)現(xiàn)問題。電壓監(jiān)測需要使用ADC,而電流監(jiān)測還需要使用電平偏移電路將高電平電流檢測電壓轉(zhuǎn)換為接地基準(zhǔn)電壓;例如,如圖3所示,通過使用跨導(dǎo)放大器。
圖3.用于監(jiān)測POL電源輸出電壓、電流和功率的一種分立式電路可行方案。
雖然我們還未探討故障管理,但看了這一長串要求之后,您可能已頭暈?zāi)X脹。當(dāng)POL輸出出現(xiàn)欠壓或過壓時(shí),即在有效的電壓窗口范圍外時(shí),會(huì)出現(xiàn)什么情況?應(yīng)該只關(guān)閉故障電源?還是應(yīng)該也關(guān)閉其他電源?如何消除導(dǎo)致系統(tǒng)板關(guān)斷的故障?
我們可以看到,F(xiàn)PGA的電源系統(tǒng)管理很快會(huì)變得非常復(fù)雜,從而分散對(duì)基本的FPGA應(yīng)用的關(guān)注。注意,F(xiàn)PGA的電源樹只是數(shù)字處理電路板上整個(gè)電源系統(tǒng)的一部分。上述大部分要求也適用于其他數(shù)字器件,例如ASIC、DSP、GPU、SoC和微處理器。我們所需的是一個(gè)簡單、可擴(kuò)展且靈活的電源系統(tǒng)管理解決方案。
數(shù)字電源系統(tǒng)管理
ADI公司提供數(shù)字電源系統(tǒng)管理(DPSM)器件產(chǎn)品,以滿足數(shù)字處理電路板中復(fù)雜的電源系統(tǒng)要求。DPSM器件可提供或不提供集成DC/DC轉(zhuǎn)換,以替代POL穩(wěn)壓器,或者與現(xiàn)有的POL穩(wěn)壓器配合使用。電源系統(tǒng)管理器不提供DC/DC轉(zhuǎn)換,對(duì)于由開關(guān)或LDO穩(wěn)壓器構(gòu)成的現(xiàn)有模擬電源系統(tǒng),可增加數(shù)字監(jiān)測和控制功能。使用單個(gè)器件(例如LTC2980),可對(duì)16個(gè)POL穩(wěn)壓器實(shí)施微調(diào)、裕量調(diào)節(jié)、監(jiān)測、時(shí)序控制、電源監(jiān)控、故障記錄和故障管理。可以混合和匹配使用不同通道數(shù)器件(2、4、8或16個(gè)通道),以管理數(shù)百個(gè)供電軌。雙通道LTC2972 是該系列的最新產(chǎn)品,它提供了一種簡單的入門解決方案,可監(jiān)測和控制此類電源系統(tǒng)中兩個(gè)最重要的供電軌; 例如,F(xiàn)PGA內(nèi)核供電軌和輔助供電軌。
雙通道電源系統(tǒng)管理器
LTC2972是一款雙通道電源系統(tǒng)管理器,為FPGA、ASIC和處理器電路板增加了基于軟件的全面監(jiān)測、控制和黑盒故障記錄功能,可加快產(chǎn)品上市,提升系統(tǒng)可靠性,以及優(yōu)化電路板功耗(圖4)。使用出色的16位ADC對(duì)POL電源輸出電壓實(shí)施微調(diào)、裕量調(diào)節(jié)和監(jiān)測,總非調(diào)整誤差(TUE)為0.25%,以提升電路板的功率和長期性能。因?yàn)槟軌驀?yán)格控制POL輸出電壓,實(shí)現(xiàn)±0.25%的精度,所以在負(fù)載瞬態(tài)(在±3% FPGA供電軌規(guī)格下,精度為±2.75%)期間有很大的裕量,從而大幅減少所需的旁路電容并釋放電路板空間。電源輸出電流使用檢測電阻、電感DCR,或者電源的IMON輸出進(jìn)行測量。電壓和電流測量值在內(nèi)部進(jìn)行乘法運(yùn)算,提供POL輸出功率讀數(shù)。
下一篇: PLC、DCS、FCS三大控
上一篇: 集成電路為高可靠性電