當(dāng)前位置: 首頁(yè) > 工業(yè)電氣產(chǎn)品 > 高低壓電器 > 電加熱器 > 電阻加熱器
發(fā)布日期:2022-10-18 點(diǎn)擊率:115
巴特沃斯濾波器是電子濾波器的一種。巴特沃斯濾波器的特點(diǎn)是通頻帶的頻率響應(yīng)曲線最平滑。這種濾波器最先由英國(guó)工程師斯替芬·巴特沃斯(StephenButterworth)在1930年發(fā)表在英國(guó)《無(wú)線電工程》期刊的一篇論文中提出的。巴特沃斯濾波器的振幅對(duì)角頻率單調(diào)下降,并且也是唯一的無(wú)論階數(shù),振幅對(duì)角頻率曲線都保持同樣的形狀的濾波器。巴特沃斯濾波器的特點(diǎn)是通頻帶內(nèi)的頻率響應(yīng)曲線最大限度平坦,沒(méi)有起伏,而在阻頻帶則逐漸下降為零。二階巴特沃斯濾波器的衰減率為每倍頻12分貝、三階巴特沃斯濾波器的衰減率為每倍頻18分貝、如此類(lèi)推。
巴特沃斯濾波器特性
巴特沃斯濾波器的特點(diǎn)是通頻帶內(nèi)的頻率響應(yīng)曲線最大限度平坦,沒(méi)有起伏,而在阻頻帶則逐漸下降為零。在振幅的對(duì)數(shù)對(duì)角頻率的波特圖上,從某一邊界角頻率開(kāi)始,振幅隨著角頻率的增加而逐步減少,趨向負(fù)無(wú)窮大。
一階巴特沃斯濾波器的衰減率為每倍頻6分貝,每十倍頻20分貝。二階巴特沃斯濾波器的衰減率為每倍頻12分貝、三階巴特沃斯濾波器的衰減率為每倍頻18分貝、如此類(lèi)推。巴特沃斯濾波器的振幅對(duì)角頻。單調(diào)下降,并且也是唯一的無(wú)論階數(shù),振幅對(duì)角頻率曲線都保持同樣的形狀的濾波器。只不過(guò)濾波器階數(shù)越高,在阻頻帶振幅衰減速度越快。其他濾波器高階的振幅對(duì)角頻率圖和低級(jí)數(shù)的振幅對(duì)角頻率有不同的形狀。
巴特沃斯濾波器原理
巴特沃斯型濾波器在現(xiàn)代設(shè)計(jì)方法設(shè)計(jì)的濾波器中,是最為有名的濾波器,由于它設(shè)計(jì)簡(jiǎn)單,性能方面又沒(méi)有明顯的缺點(diǎn),又因它對(duì)構(gòu)成濾波器的元件Q值較低,因而易于制作且達(dá)到設(shè)計(jì)性能,因而得到了廣泛應(yīng)用。其中,巴特沃斯濾波器的特點(diǎn)是通頻帶的頻率響應(yīng)曲線最平滑。
濾波器的截止頻率的變換是通過(guò)先求出待設(shè)計(jì)濾波器的截止頻率與基準(zhǔn)濾波器的截止頻率的比值M,再用這個(gè)M去除濾波器中的所有元件值來(lái)實(shí)現(xiàn)的,其計(jì)算公式如下:M=待設(shè)計(jì)濾波器的截止頻率/基準(zhǔn)濾波器的截止頻率。
濾波器的特征阻抗的變換是通過(guò)先求出待設(shè)計(jì)濾波器的特征阻抗與基準(zhǔn)濾波器的特征阻抗的比值K,再用這個(gè)K去乘基準(zhǔn)濾波器中的所有電感元件值和用這個(gè)K去除基準(zhǔn)濾波器中的所有電容元件值來(lái)實(shí)現(xiàn)的。
巴特沃斯濾波器與其它濾波器比較
下圖是巴特沃斯濾波器(左上)和同階第一類(lèi)切比雪夫?yàn)V波器(右上)、第二類(lèi)切比雪夫?yàn)V波器(左下)、橢圓函數(shù)濾波器(右下)的頻率響應(yīng)圖。
特沃斯濾波器優(yōu)點(diǎn)
巴特沃斯濾波器的特點(diǎn)是通頻帶內(nèi)的頻率響應(yīng)曲線最大限度平坦,沒(méi)有起伏,而在阻頻帶則逐漸下降為零。在振幅的對(duì)數(shù)對(duì)角頻率的波得圖上,從某一邊界角頻率開(kāi)始,振幅隨著角頻率的增加而逐漸減少,趨向負(fù)無(wú)窮大。
一階巴特沃斯濾波器的衰減率為每倍頻6分貝,每十倍頻20分貝。二階巴特沃斯濾波器的衰減率為每倍頻12分貝,三階巴特沃斯濾波器的衰減率為每倍頻18分貝,如此類(lèi)推。巴特沃斯濾波器的振幅對(duì)角頻率單調(diào)下降,并且也是唯一的無(wú)論階數(shù)、振幅對(duì)角頻率曲線都保持同樣的形狀的濾波器。只不過(guò)濾波器階數(shù)越高,在阻頻帶振幅衰減速度越快。其他濾波器高階的振幅對(duì)角頻率圖和低級(jí)數(shù)的振幅對(duì)角頻率有不同的形狀。
巴特沃斯濾波器是濾波器的一種設(shè)計(jì)分類(lèi),類(lèi)同于切比雪夫?yàn)V波器,它有高通,低通,帶通,高通,帶阻等多種濾波器。它在通頻帶內(nèi)外都有平穩(wěn)的幅頻特性,但有較長(zhǎng)的過(guò)渡帶,在過(guò)渡帶上很容易造成失真,我在調(diào)用MATLAB里的巴特沃斯濾波器做仿真時(shí),信號(hào)總會(huì)在第一個(gè)周期略微有些失真,但往后的幅頻特性就非常的好。
巴特沃斯濾波器主要參數(shù)介紹
(1)[N,wc]=buttord(wp,ws,RP,As,’s’)
該格式用于計(jì)算巴特沃斯模擬濾波器的階數(shù)N和3db截止頻率wc。Wp、ws和wc是實(shí)際模擬角頻率(rads)。Rp和As為通帶最大衰減和最小衰減。
(2)[Z,P,k]=buttap(N)
該格式用于計(jì)算N階巴特沃斯歸一化模擬低通原型濾波器系統(tǒng)函數(shù)的零、極點(diǎn)和增益因子,返回長(zhǎng)度為N的列向量Z和P,分別給出N個(gè)零點(diǎn)和極點(diǎn)的位置,K表示濾波器增益。
(3)Y=filter(b,a,x)
式中b表示系統(tǒng)傳遞函數(shù)的分子多項(xiàng)式的系數(shù)矩陣;a表示系統(tǒng)傳遞函數(shù)的分母多項(xiàng)式的系數(shù)矩陣;x表示輸入序列;filter表示輸出序列。IIR函數(shù)實(shí)現(xiàn)的直接形式。
(4)[b,a]=butter(N,wc,‘ftype’)
計(jì)算N階巴特沃斯數(shù)字濾波器系統(tǒng)函數(shù)分子、分母多項(xiàng)式的系數(shù)向量b、a。
說(shuō)明:調(diào)用參數(shù)N和wc分別為巴特沃斯數(shù)字濾波器的階數(shù)和3dB截止頻率的歸一化值,一般是調(diào)用buttord格式(1)計(jì)算N和wc。系數(shù)b、a是按照z-1的升冪排列。
(5)[B,A]=butter(N,Ωc,‘ftype’,‘s’)
計(jì)算巴特沃斯模擬濾波器系統(tǒng)函數(shù)的分子、分母多項(xiàng)式系數(shù)向量。
說(shuō)明:調(diào)用參數(shù)N和Ωc分別為巴特沃斯模擬濾波器的階數(shù)和3dB截止頻率(實(shí)際角頻率),可調(diào)用buttord(2)格式計(jì)算N和Ωc。系數(shù)B、A按s的正降冪排列。
tfype為濾波器的類(lèi)型:
◇ftype=high時(shí),高通;Ωc只有1個(gè)值。
◇ftype=stop時(shí),帶阻;Ωc=[Ωcl,Ωcu],分別為帶阻濾波器的通帶3dB下截止頻率和上截止頻率。
◇ftype缺省時(shí):若Ωc只有1個(gè)值,則默認(rèn)為低通;若Ωc有2個(gè)值,則默認(rèn)為帶通;其通帶頻率區(qū)間Ωcl《Ω《Ωcu。
(6)[H,w]=freqz(b,a,N)
b和a分別為離散系統(tǒng)的系統(tǒng)函數(shù)分子、分母多項(xiàng)式的系數(shù)向量,返回量H則包含了離散系統(tǒng)頻響在0~pi范圍內(nèi)N個(gè)頻率等分點(diǎn)的值(其中N為正整數(shù)),w則包含了范圍內(nèi)N個(gè)頻率等分點(diǎn)。調(diào)用默認(rèn)的N時(shí),其值是512。可以先調(diào)用freqz()函數(shù)計(jì)算系統(tǒng)的頻率響應(yīng),然后利用abs()和angle()函數(shù)及plot()函數(shù),繪制出系統(tǒng)的頻響曲線。
(7)lp2lp函數(shù)
[bt,at]=lp2lp(b,a,w0)
該函數(shù)用于實(shí)現(xiàn)由低通模擬原型濾波器至低通濾波器的頻率變換,可以用傳遞函數(shù)和狀態(tài)空間進(jìn)行轉(zhuǎn)換,但無(wú)論哪種形式,其輸入必須是模擬濾波器原型。
(8)[bz,az]=impinvar(b,a,fs)
把具有[b,a]模擬濾波器傳遞函數(shù)模型轉(zhuǎn)換為采樣頻率為fs的數(shù)字濾波器的傳遞函數(shù)模型[bz,az],如果在函數(shù)中沒(méi)有確定頻率fs時(shí),函數(shù)默認(rèn)為1Hz.
以上就是對(duì)巴特沃斯濾波器參數(shù)的詳解,希望對(duì)大家有所幫助
下一篇: PLC、DCS、FCS三大控
上一篇: WiFi 7真的靠譜嗎?